Диеновые углеводороды (алкадиены). Непредельные углеводороды. Алкадиены. Каучуки Типы диенов

Общая характеристика алкадиенов

Алкадиены являются представителями ненасыщенных углеводородов, которые содержат в своем углеродном скелете две двойные связи, поэтому их еще называют диеновыми углеводородами.

А вот что собой представляет общая формула гомологического ряда алкадиенов:

СnН2n-2.

Но, эта формула также соответствует и гомологическому ряду алкинов, а также циклоалкенов.

О наличии двух двойных связей в молекуле нам говорит название класса, где «ди» обозначает два, а «ен» переводится, как связь, то есть двойная связь.

Классификация диенов

Также следует отметить, что в зависимости от взаимного расположения двойных связей, диены можно разделить на такие группы, как:

Первая группа

Кумулированные диены. Это такие соединения, молекулы которых имеют две двойные связи расположены у одного и того же атома углерода (1,2-диены)

Вторая группа

Сопряженные диены. К ним относятся алкадиены, в молекулах, которых имеются две двойные связи, разделенные одинарной или одной простой связью:

Вот какой вид иногда могут иметь алкадиены, которые имеют сопряженные связи:

СН2-СН-СН-СН2

Третья группа

Изолированные диены. К ним относятся такие соединения, у которых молекулы имеют две двойные связи и притом эти двойные связи разделены несколькими одинарными

CH2=CH-CH2-CH=CH2

Изомерия и номенклатура

Если рассматривать изометрию алкадиенов, то здесь следует сказать, что для них характерна, как структурная изометрия, так и пространственная.

На рисунке внизу мы видим примеры структурной и пространственной изометрии:



Что же касательно составления названий алкадиенов, то здесь существуют следующие правила:

Во-первых, основная цепь в обязательном порядке должна содержать две двойные связи;
Во-вторых, нумерацию, как правило начинают с того конца, с которого ближе расположена кратная связь;
В-третьих, дают названия заменителям и указывают атомы углерода, от которого они отходят;
В-четвертых, атомы углерода дают название алкадиена, как правило, от тех атомов, от которых была образована двойная связь.

Получение алкадиенов

Если рассматривать вопрос получения диенов, то, как правило, используют:

1. Метод С.В.Лебедева. С его помощью в промышленности было налажено производство бутадиена из этилового спирта. В основе этого метода, который разработал Лебедев, лежит реакция:

425 °С, Аl2O3, ZnO
2СН3-СН2-ОН -----------------> СН9=СН-СН=СН9 + 2Н2O + Н2


Сергей Васильевич Лебедев был известным химиком, который посвятил свои научные исследования полимеризации, изомеризации и гидрогенизации непредельных углеводородов. С помощью полимеризации 1,3-бутадиена под действием натрия, ему удалось получить синтетический каучук.

2. Способ дегидрирования. Одним из распространенных промышленных методов получения бутадиена-1,3 является каталитическое дегидрирование н -бутана, которые выделяют из частей нефтеперегонки:

СН3-СН2-СН2-СН3 -> CH2=CH-СН=СН2 + 2Н2

При рассмотрении этого процесса, на его первой стадии может образовываться как бутен-1, так и бутен-2.



Изопрен (2-метилбутадиен-1,3) получают методом дегидрирования 2-метилбутана.

3. Способ дегидрогалогенирования. Для получения алкадиенов можно применять стандартный лабораторный, которым является способ реакции отщепления.

При воздействии спиртового раствора щелочи на дибромалканы, мы можем наблюдать процесс отщепления двух молекул галогеноводорода и образование двух двойных связей:


Физические свойства

Что касается физических свойств алкадиенов, то при изолированной двойной связи, они имеют такие же свойства, как и обычные алкены.

При обычных условиях, бутадиен-1,3 представляет собой легко сжижающийся газ, который имеет довольно неприятный запах. А изопрен и другие низшие диены, являются бесцветными легкокипящими жидкостями. Что касается высших диенов, то они представлены в виде твердых веществ.

Химические свойства

Как вам уже известно, химические и физические свойства алкадиенов имеют много общего с алкенами, хотя алкадиены с сопряженными связями имеют свои нюансы и являются более активными.

1. Для алкадиенов свойственна реакции присоединения, и они способны присоединять, как водород, так и галогены, и галогеноводороды.

Главной особенность диенов является то, что они обладают способностью присоединения не только молекулы 1,2, но и продукт присоединения 1,4:


Предпочтительное протекание реакции, как правило, зависимо от условий и способа проведения.

2. Следующим химическим свойством диенов является реакции полимеризации. Она может происходить под воздействием катионов или свободных радикалов. Как правило, такая полимеризация этих соединений приводит к образованию полимеров, которые обладают свойствами, напоминающими природный каучук. Поэтому можно сказать, что основной областью применения бутадиена и изопрена, является получение синтетического каучука.

Натуральный и синтетический каучуки. Резина

Пока человек не научился производить синтетический каучук, до тех пор в промышленности использовали натуральный каучук. Получали такой каучук с помощью каучуконосных растений, методом выделения млечного сока, то есть так называемого латекса. Наиболее ценным растением по выделению природного каучука считалась произрастающая в Латинской Америке гевея.

В этой области было проведено огромное количество исследований, которые выявили, что натуральный каучук имеет в своем составе цис-полиизопрен, то есть, это такой полимер, который по своему строению соответствует изопрену (2-метилбутадиену-1,3).

Но благодаря проведению различных опытов и исследований, американский изобретатель Чарльз Нельсон Гудьир сумел провести вулканизацию каучука. Им было обнаружено, что что при нагревании каучука с серой в итоге получается довольно таки эластичный материал, который даже по техническим характеристикам превосходит каучук. Вот таким методом Гудьиру удалось получить резину.

Чарльз Нельсон проведя вулканизацию, заметил, что за счет сульфидных мостиков происходит сшивание полимерных цепей и в итоге увеличивается прочность и устойчивость к различным органическим веществам и растворителям.


А так как в двадцатом веке начался стремительный рост промышленности, то и потребность в каучуке также возросла. Но использование в промышленных масштабах природного каучука было не рентабельно и довольно таки дорого, то ученым пришлось искать пути получения синтетического каучука.

Но, первоначально не все так просто складывалось в этой области, и первый полученный каучук отдаленно напоминал смолу, которая к тому же, при ее вулканизации имела очень плохое качество.

Как вам уже известно, из сегодняшнего урока, синтетический каучук был получен по методу химика С.В.Лебедева только в 1932 году, тогда же его производство и приобрело промышленные масштабы.

В основе такого технологически удобного способа получения каучука, лежала полимеризация бутадиена-1,3 с использованием такого катализатора, как металлический натрий.

Благодаря этой технологии удалось получить полибутадиен, который обладал довольно неплохими технологическими свойствами. Но и здесь не все было так гладко, как хотелось, потому что, полученный полимер был нестерео-регулярным и соответственно, произведенная на его основе резина не отличалась особой эластичностью и уступала качеству резины, полученной из природного каучука.

А вот изопреновые и стерео-регулярные полимеры ученым удалось получить только в пятидесятых годах двадцатого века.

Конечно же, в настоящее время, современные технологии в химической промышленности позволяют производить не один, а несколько видов синтетического каучука. Широкое использование в качестве мономеров получили такие типы синтетических каучуков, как изопреновый, бутадиеновый, хлоропреновый, стирольный и т.д.

Также, большой популярностью пользуется резина, которая произведена на основе сополимеров алкадиенов, сочлененными двойными связями, а также производные алкенов.

Для таких видов резины характерны: хорошая эластичность, прочность и морозоустойчивость. Кроме того, эти виды резины обладают пониженной газопроницаемостью, а также устойчивы к действию ультрафиолета и различных окислителей.

Домашнее задание

Ответьте на поставленные вопросы и решите данные задания.



Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

«Уфимский государственный нефтяной технический университет»

Кафедра: «Физическая и органическая химия»

Ациклические непредельные углеводороды диены

Ст. гр. БТП-09-01 Антипин А.

Доцент Калашников С.М.

Диеновые углеводороды (алкадиены)

Получение диенов

Физические свойства диенов

Химические свойства диенов

Применение диенов

Номенклатура

Диеновые углеводороды (алкадиены)

Диеновые углеводороды или алкадиены - это непредельные углеводороды, содержащие две двойные углерод - углеродные связи. Общая формула алкадиенов CnH2n-2.

В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т.е. примыкающими к одному атому углерода. Например, пропадиен или аллен CH2=C=CH2;

2) углеводороды с изолированными двойными связями, т.е разделенными двумя и более простыми связями. Например, пентадиен -1,4 CH2=CH-CH2-CH=CH2;

3) углеводороды с сопряженными двойными связями, т.е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил CH2=CH-CH=CH2, 2-метилбутадиен -1,3 или изопрен

Получение диенов

Углеводороды с сопряженными двойными связями получают:

1) дегидрированием алканов, содержащихся в природном газе и газах нефтепереработки, при пропускании их над нагретым катализатором

2) дегидрированием и дегидратацией этилового спирта при пропускании паров спирта над нагретыми катализаторами (метод акад. С.В.Лебедева)

Физические свойства диенов

Бутадиен -1,3 - легко сжижающийся газ с неприятным запахом, t°пл. = -108,9°C, t°кип. = -4,5°C; растворяется в эфире, бензоле, не растворяется в воде.

2- Метилбутадиен -1,3 - летучая жидкость, t°пл. = -146°C, t°кип. = 34,1°C; растворяется в большинстве углеводородных растворителях, эфире, спирте, не растворяется в воде.

Химические свойства диенов

Атомы углерода в молекуле бутадиена-1,3 находятся в sp2 - гибридном состоянии, что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p- орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.

Схематическое изображение строения молекул дидивинила (а) и вид модели сверху (b).

Перекрывание электронных облаков между С1-С2 и С3-С4 больше, чем между С2-С3.

p- Орбитали всех атомов углерода перекрываются друг с другом, т.е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s- связью, а обладает некоторой плотностью p- электронов, т.е. слабым характером двойной связи. Это означает, что s- электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p- электронов, т.е. равномерное распределение p- электронной плотности по всей молекуле с образованием единого p- электронного облака.

Взаимодействие двух или нескольких соседних p- связей с образованием единого p- электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения.

Таким образом, молекула бутадиена -1,3 характеризуется системой сопряженных двойных связей.

Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2- присоединение), но и к двум концам сопряженной системы (1,4- присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4- присоединения является основным.

Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов.

Как видно, реакции бромирования и гидрохлорирования приводят к продуктам 1,2- и 1,4- присоединения, причем количество последних зависит, в частности, от природы реагента и условий проведения реакции.

Важной особенностью сопряженных диеновых углеводородов является, кроме того, их способность вступать в реакцию полимеризации. Полимеризация, как и у олефинов, осуществляется под влиянием катализаторов или инициаторов.

Она может протекать по схемам 1,2- и 1,4- присоединения.

Применение диенов

Алкадиены применяются для производства каучука.

В современной промышленности важную роль играю эластомеры - высокомолекулярные вещества, сохраняющие эластичность в широком интервале температур Эластомеры легко изменяют фирму при внешнем воздействии, а после окончания воздействия принимают исходную форму. Типичными эластомерами являются каучуки.

Натуральный каучук. Натуральный каучук получается из природного сырья -- сока дерева гевеи, распространенного в Южной Америке (главным образом в Бразилии). На воздухе белый млечный сок этого дерева быстро твердеет и темнеет, превращаясь в эластичную массу.

Натуральный каучук представляет собой полимер изопрена.

Синтетический каучук. Большие потребности промышленности в каучуке обусловили разработку синтетических способов его получения.

В СССР синтетический каучук начал впервые производиться в промышленных масштабах в 19321 по способу С. В. Лебедева. Этот способ заключался в полимеризации бутадиена-1,3 в присутствии металлического натрия в качестве катализатора:

nСН2 = СН - СН =CH2 ? (- СН2 - СН = СН - СН2 -)n

бутадиен-1,3 бутадиеновый каучук

(полибуталиен)

Такой каучук уступает по свойствам натуральному: он менее эластичен, изделия из него быстрее изнашиваются.

Каучук используют в производстве шин, резинотехнических изделий, клеев, эбонита, медицинских и бытовых изделий.

Для превращения каучука в резину проводят вулканизацию каучука. Резина отличается от каучука большей эластичностью и прочностью. Она устойчивее к действию температуры и растворителей.

диеновый углеводород физический химический каучук

Номенклатура

Главную цепь в диенах выбирают так, чтобы она содержала обе двойные связи, и нумеруют с того конца, при котором сумма номеров положений двойных связей минимальна. В названии соответствующего алкана окончание -ан заменяется на -диен.

Размещено на Allbest.ru

Подобные документы

    Непредельные соединения, с двумя двойными связями в молекуле - диеновые углеводороды. Связь между строением диеновых углеводородов и их свойствами. Способы получения девинила, изопрена, синтетического каучука. Органические галогениды и их классификация.

    лекция , добавлен 19.02.2009

    Характеристика алкадиенов как непредельных углеводородов. Общая формула алкадиенов. Основне формулы получения алкадиенов: каталитическое двухстадийное дегидрирование алканов, синтез дивинила по Лебедеву, дегидратация гликолей, дегидрогалогенирование.

    презентация , добавлен 22.04.2011

    Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.

    контрольная работа , добавлен 27.02.2009

    Типы диенов: изолированные, сопряженные и куммулированные. Способ получения дивинила из этанола. Строение сопряженных диенов. Причины затрудненного вращения в молекуле бутадиена. Реакции полимеризации. Реакционная способность кумулированных алкадиенов.

    контрольная работа , добавлен 05.08.2013

    Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.

    реферат , добавлен 11.12.2011

    Понятие, основные физические и химические свойства циклоалканов как насыщенных моноциклических углеводородов, алициклических соединений. Исследование примеров данных соединений: бензола, циклогексана: их схемы и элементы, применение и побочные действия.

    презентация , добавлен 05.02.2014

    Исследование состава и структуры алкенов как ациклических непредельных углеродов, содержащих одну двойную связь С=С. Процесс получения алкенов и свойства цис-транс-изомерии в ряду алкенов. Анализ физических и химических свойств алкенов и их применение.

    реферат , добавлен 11.01.2011

    Особенности строения предельных углеводородов. Номенклатура углеводородов ряда метана. Химические свойства предельных углеводородов, их применение. Структурные формулы циклопарафинов (циклоалканов), их изображение в виде правильных многоугольников.

    контрольная работа , добавлен 24.09.2010

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

    презентация , добавлен 16.03.2011

    Общая характеристика группы. Бериллий и магний. История, распространенность, получение, особенности, физические свойства, применение щелочноземельных металлов. Химические свойства щелочноземельных металлов и их соединений.

Каталитически возбужденный водород присоединя­ется в 1,2- и 1,4-положения:

4.4.2. Галогенирование

Галогены также способны присо­единяться к сопряженным системам в 1,2- и 1,4-положения, причем ко­личество 1,4-продукта зависит от строения диенового углеводорода, при­роды галогена и условий реакции. Выход продукта 1,4-присоединения возрастает при повышении температуры (до известного предела) и при переходе от хлора к иоду:

Как и в случае этиленовых соединений, присоединение может происхо­дить как по ионному, так и по радикальному механизму.

При ионном механизме присоединения, например хлора, первоначаль­но возникающий π-комплекс (I) быстро превращается в сопряженный карбений-хлорониевый ион с положительным зарядом на С 2 и С 4 , кото­рый можно изобразить двумя граничными формулами (II) или одной мезомерной формулой (III). Этот ион присоединяет далее анион хлора в положения 2 и 4 с образованием продуктов 1,2- и 1,4-присоединения. По­следние, в свою очередь, могут изомеризоваться в подходящих условиях один в другой до достижения состояния равновесия через тот же самый промежуточный карбениевый ион:

Если в условиях реакции присоединения система близка к состоянию равновесия, содержание каждого изомера в продуктах реакции зависит от положения равновесия. Обычно 1,4-продукт энергетически более выго­ден и потому преобладает.

Наоборот, когда система далека от состояния равновесия, может обра­зоваться преимущественно 1,2-продукт, если энергия активации в реак­ции его образования ниже, чем в реакции образования 1,4-продукта. Так, в случае присоединения хлора к дивинилу получается примерно равное количество 1,2- и 1,4-дихлорбутенов, в случае же присоединения брома получается около 66% 1,4-продукта, так как связь С-Вг менее прочна, чем связь С-С1, и равновесие для бромида достигается легче. Повыше­ние температуры приближает систему к равновесному состоянию.

При радикальном присоединении атома галогена образуется сопря­женный радикал, который также обладает двойственной реакционной способностью, однако образуется преимущественно 1,4-аддукт:

4.4.3. Гидрогалогенирование

В реакциях присоединения галогеноводо-родов действуют те же закономерности:

4.4.4. Гипогалогенирование

Гипогалогенные кислоты и их эфиры присое­диняются преимущественно в 1,2-положения. Здесь система в момент ре­акции особенно далека от состояния равновесия (связь С–О значительно прочнее связей С–Hlg), а энергия активации в реакции образования 1,2-продукта ниже, чем в реакции образования 1,4-продукта:

4.4.5. Димеризация диенов

При нагревании молекулы диеновых углеводородов способны присоединяться друг к другу таким образом, что одна из них реа­гирует в 1,2-, а другая в 1,4-положениях. Одновременно в небольших ко­личествах получается также продукт присоединения обеих молекул в 1,4-положение:

В такую реакцию димеризации могут вступать и молекулы различных диенов:

4.4.6. Диеновый синтез

Особенно легко такие реакции идут в том случае, когда одна из реагирующих молекул имеет активированную двойную связь, электрофильность которой повышена благодаря сопряжению с электроотрицательными атомами. Подобные конденсации получили на­звание диенового синтеза или реакции Дильса -Альдера:

Эта реакция широко используется для качественного и количественно­го определения диеновых углеводородов, а также для синтеза различных соединений с шестичленными циклами.

Реакции диенового синтеза и димеризации алкадиенов идут через цик­лическое переходное состояние с одновременным или почти одновремен­ным образованием обеих новых связей, т. е. как перециклические про­цессы.

Возможность и условия протекания подобного рода реакций циклизации, проходящих без промежуточного образования радикалов или ионов, подчиняются закономерностям, нося­щим название правил Вудворта -Гофмана. Согласно этим правилам, для того чтобы замкнулся цикл, орбитали, образующие новые связи, должны иметь возможность перекры­ться с образованием связывающих орбиталей, т. е. должны быть направлены друг к другу сегментами одинакового знака.

Если для этого не требуется возбуждение какой-либо из реагирующих молекул (переход электронов на более высокий уровень с изменением знака сегментов), то процесс разрешен по симметрии как термический, т. е. реакция будет идти или ускоряться при нагревании. Если для указанной выше ориентации орбиталей необходимо перевести электроны одной из моле­кул на более высокий уровень (на разрыхляющую орбиталь), реакция разрешена по симмет­рии только как фотохимический процесс.

Разумеется, такие реакции могут идти и по радикальному или каталити­ческому механизмам с образованием промежуточных частиц. К таким процессам правила Вудворта–Гофмана отношения не имеют.

4.1. Изомерия и номенклатура диенов

Диеновые углеводороды имеют две двойные связи в молекуле, т. е. на четыре атома водорода меньше, чем соответствующие им предельные уг­леводороды. Общая формула алкадиенов С n Н 2 n -2 . Поскольку для образо­вания двух двойных связей необходимо по крайней мере три атома углеро­да, в этом ряду гомологи с одним и двумя атомами углерода не существуют.

В зависимости от взаимного расположения двойных связей диеновые углеводороды можно разделить на три основных типа:

    диены с кумуллированными двойными связями, т.е. с двойными связями у одного углеродного атома (алленовые);

    диены с конъюгированными (сопряженными) двойными связями;

3) диены с изолированными двойными связями

Диены по систематической номенклатуре называются так же, как и этиленовые углеводороды, только вместо суффикса -ен ста­вится суффикс -адиен (так как двойных связей две). Положение двойных связей, как обычно, показывают цифрами. Для некоторых диенов сохра­нились тривиальные или старые рациональные названия:

СН 2 =С = СН 2 пропадиен, аллен

СН 3 -СН=С=СН 2 1,2-бутадиен, метилаллен

СН 2 =СН-СН=СН 2 1,3-бутадиен, дивинил

2-метил-1,3-бутадиен, изопрен

СН 3 -СН=СН-СН=СН 2 1,3-пентадиен, пиперилен

2,3-диметил-1,3-бутадиен

СН 2 =СН-СН 2 -СН 2 -СН=СН 2 1,5-гексадиен, диаллил

4.2. Способы получения диенов

Способы получения углеводородов диенов в большинстве слу­чаев не отличаются от способов получения олефинов, только соответству­ющие реакции необходимо проводить дважды или в качестве исходного вещества применять соединения, уже содержащие двойную связь.

4.2.1. Дегидрирование алкан-алкеновых фракций:

Дегидрирование бутан-бутеновых и пентан-пентеновых фракций над катализаторами (обычно используется Cr 2 О 3) приводят к образованию диенов:

4.2.2. Получение дивинила и изопрена дегидратацией гликолей

4.2.3. Дегидратация непредельных спиртов

4.2.4. Получение дивинила димеризацией ацетилена с последующим гидрированием

4.2. 5 . Синтез Реппе

Синтез основан на высокой подвижности водорода у тройной связи, благодаря чему он легко вступает во взаимодействие с карбонильными соединениями, в том числе и с метаналем:

Аналогично получают изопрен (способ Фаворского), используя в качестве карбонильного соединения ацетон.

4.3. Физические свойства и строение диенов

Алены (1,2-диены). В молекуле аллена и других соединений с кумулированными связями, π-связи располагаются в двух взаимно перпендикулярных плоскостях. Плоскости, в которых распо­лагаются две пары водородных атомов, также взаимно перпендикулярны. Два крайних угле­родных атома алленовой системы находятся в состоянии sp 2 -гибридизации, средний – sp-гибридизации (рис. 4).

Эти особенности квантово-механического строения проявляются в физических и химиче­ских свойствах алленов. В частности, в ряду алленов при двух различных заместителях у конеч­ных углеродных атомов возможна оптическая активность благодаря молекулярной асиммет­рии. Два пространственных изомера, относящи­еся друг к другу как предмет к своему зеркально­му изображению, при наложении не совпадают и, следовательно, представляют собой две раз­личные изомерные молекулы.

Рис. 4. Строения молекулы аллена

Для алленов характерны легкость гидрата­ции разбавленной серной кислотой с образова­нием кетонов, способность полимеризоваться или конденсироваться с другими непредельны­ми соединениями с образованием четырехчлен­ных циклов (С. В. Лебедев):

Сопряженные диены (1,3-диены). Сопряженные диены отличаются от алкенов большей устойчивостью, а также спо­собностью вступать в реакции присоединения по атомам 1,2 и 1,4 и большей ре­акционной способностью.

Две сопряженные π-связи образуют общее электронное облако - все четыре углеродных атома находятся в состоянии sp 2 -гибридизации. Это приводит к укорочению простой связи и к стабилизации молекулы. В молекуле дивинила π -связи образованы за счет перекрывания р-орбиталей атомов С 1 и С 2 , Сз и С 3 . Также возможно перекрыва­ние р-орбиталей атомов С 2 и С 3 . Возникающая в результате этого делокализация π -электронов делает молекулу более устойчивой, поскольку каждая пара электро­нов притягивается не двумя, а четырьмя ядрами углерода:

Рис. 5. Строение молекулы дивинила

Связь С 2 – С 3 приобретает некоторый характер двоесвязанности. Длина ее меньше, чем в алканах (1,48 Å), что вызвано эффектом сопряжения. Это и объяс­няет поведение диенов в реакциях электрофильного присоединения, где реагент может присоединяться не только к соседним атомам при кратной связи (1,2-присоединение), но и к двум концам сопряженной системы (1,4-присоединение).

Физические свойства диенов. Дивинил при обычных условиях – газ. Изопрен и другие простейшие алкадиены – жидкости. Обычные закономерности, свойственные гомо­логическим рядам углеводородов, действуют и в этом ряду.

Для алкадиенов с сопряженными двойными связями характерны ано­мально высокие показатели преломления света. Благодаря этой особен­ности найденные молекулярные рефракции алкадиенов значительно боль­ше вычисленных. Разница между найденной и вычисленной величинами составляет обычно 1–1,5 единицы. Она называется молекулярной экзальтацией .

Алкадиены поглощают ультрафиолетовое излучение в значительно бо­лее длинноволновой области, чем алкены. Например, 1,3-бутадиен погло­щает при 217 нм. Накопление в молекуле сопряженных двойных связей ведет к дальнейшему смещению максимума поглощения из ультрафиоле­товой области в видимую область: при четырех сопряженных двойных связях появляется желтая окраска.

В ИК-спектрах для 1,3-алкадиенов характерно снижение частоты и увеличение интенсивности полосы валентных колебаний двойных связей (примерно до 1600 см -1).

Наибольшее практическое значение имеют сопряженные диены.

Определение, гомологический ряд, номенклатура алкадиенов.

Алкадиены – органические соединения, углеводороды алифатического (ациклического) непредельного характера, в молекуле которых между атомами углерода – две двойные связи, и которые соответствуют общей формуле C n H 2 n -2 , где n =3 или n >3. Их также называют диеновыми углеводородами.

Простейшим представителем алкадиенов является пропадиен.

Гомологический ряд.

Общая формула диеновых углеводородов C n H 2n-2 . В названии алкадиенов содержится корень, обозначающий число атомов углерода в углеродной цепи, и суффикс –диен («две» «двойные связи»), обозначающий принадлежность соединения к данному классу.

C 3 H 4 – пропадиен

C 4 H 6 – бутадиен

C 5 H 8 – пентадиен

C 6 H 10 – гексадиен

C 7 H 12 – гептадиен

C 9 H 16 – нонадиен

Номенклатура алкадиенов.

1. Выбор главной цепи. Образование названия углеводорода по номенклатуре ИЮПАК начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкадиенов главную цепь необходимо выбирать так, чтобы в нее входили обе двойные связи.

2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, с которого ближе расположены по старшинству (по преимуществу):

кратная связь → заместитель → углеводородный радикал .

Т.е. при нумерации в определении названия алкадиена положение кратной связи имеет преимущество перед остальными.

Нумеровать атомы в цепи нужно таким образом, чтобы атомы углерода, связанные двойными связями, получили минимальные номера.

Если по положению двойных связей нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для алкенов.

3. Формирование названия. , После корня, обозначающего числа атомов углерода в цепи, и суффикса –диен, обозначающий принадлежность соединения к классу алкенов, через в конце названия указывают местоположение двойных связей в углеродной цепи, т.е. номер атомов углерода, у которых начинаются двойные связи.

Если есть заместители, то в начале названия указывают цифры − номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди – два, три – три, тетра − четыре, пента − пять) и название заместителя (метил. этил, пропил). Затем без пробелов и дефисов − название главной цепи. Главная цепь называется как углеводород − член гомологического ряда влкадиенов (пропадиен, бутадиен, пентадиен и т.д.).

Похожие публикации