Субъективные аспекты применения математического моделирования военных действий в работе органов военного управления. Причинность и взаимодействие в физике Почему применение моделей влияет на границы применимости

ВОЕННАЯ МЫСЛЬ № 10/2011, стр. 49-53

Полковник О.В. ТИХАНЫЧЕВ ,

кандидат технических наук

ТИХАНЫЧЕВ Олег Васильевич родился 30 октября 1965 года в городе Шуя Ивановской области. Окончил Казанское высшее военное командно-инженерное училище (1988), Михайловскую артиллерийскую академию (1997). Проходил службу в должностях командира взвода, заместителя командира батареи в ГСВГ и СКВО. С 1997 года - в 27 ЦНИИ МО РФ на должностях научного сотрудника, начальника отдела, ведущего научного сотрудника научно-исследовательского управления.

В 2005 году защитил диссертацию кандидата технических наук. Автор более 100 научных трудов. Профессор Академии военных наук.

АННОТАЦИЯ . Проанализирован опыт разработки математических моделей для автоматизированных систем управления и применения макетных образцов программ математических моделей на мероприятиях оперативной подготовки. Обоснована необходимость совершенствования порядка разработки математических моделей с целью снижения влияния субъективных факторов на эффективность их применения.

КЛЮЧЕВЫЕ СЛОВА : математическое моделирование, порядок разработки моделей, опыт мероприятий оперативной подготовки, объективные и субъективные факторы, совершенствование организации разработки моделей.

SUMMARY. The author analyzes the experience of developing mathematical models for automated control systems and application of software prototypes of mathematical models for operational training activities. The necessity of improving the procedure of development of mathematical models is reasoned to reduce the influence of human factors on the effectiveness of their application.

KEYWORDS: mathematical simulation, modeling procedure, experience of operational training activities, objective and human factors, improving the modeling organization.

В СОВРЕМЕННЫХ условиях приоритетным направлением реформирования Вооруженных Сил Российской Федерации является повышение эффективности их применения, в том числе за счет автоматизации управления войсками (силами). Под автоматизацией управления войсками (силами) понимается процесс оснащения штабов, пунктов управления и боевых комплексов средствами электронно-вычислительной техники и использования их в работе органов управления.

Интеллектуальной составляющей комплекса средств автоматизации автоматизированной системы управления войсками (АСУВ) является программное обеспечение, которое делится на общее, общесистемное и специальное. Специальное программное обеспечение (СПО) АСУВ состоит из расчетных, информационных задач и математических моделей. Последние выполняют существенную роль в процессе планирования операций (боевых действий) и управлении войсками (силами), обеспечивая прогнозирование развития обстановки и сравнительную оценку эффективности принимаемых решений.

В статье «Моделирование вооруженного противоборства: перспективы развития» был рассмотрен ряд важных аспектов применения математического моделирования в военном деле. Но «за кадром» остались субъективные факторы, хотя на практике они оказывают существенное влияние на использование математического моделирования в процессе организации операций (боевых действий). Субъективные причины ограниченного применения математического моделирования в практической работе штабов не получили должного освещения в последующих публикациях, касающихся математического моделирования. Так, в статье «Проблемы автоматизации интеллектуальной поддержки принятия решений общевойсковыми командирами в тактическом звене» отмечается, что математические модели должны являться важнейшим компонентом АСУВ, но они так и не нашли широкого применения в процессе принятия решения на бой и управления им. Почему это произошло, не уточняется. Рассматриваются преимущественно недостатки существующих моделей и объективные технологические факторы, мешающие использованию математического моделирования. Субъективные причины упоминаются вскользь.

Вместе с тем в военной области, характеризуемой ожесточенным противоборством и высокой личной ответственностью лица, принимающего решения, наличие субъективного фактора представляет собой не просто неизбежное, а и закономерное явление. В условиях неполной информации опытные командиры (начальники) способны формулировать правильные решения на интуитивном уровне. При этом обычно они исходят из своих субъективных представлений о важности различных критериев оптимальности и эффективности возможных альтернатив принимаемых решений. Именно это часто порождает субъективное неприятие результатов математического моделирования, что в конечном счете может приводить к серьезным ошибкам в планировании и боевом управлении.

Таким образом, наличие субъективных факторов, сдерживающих применение математического моделирования в военном деле, - реальный факт, требующий осмысления и принятия соответствующих мер.

Чем же конкретно определяются случаи субъективного неприятия применения математического моделирования должностными лицами органов военного управления (ОВУ)? Причин много, и проявляются они как на этапах разработки, так и на этапе использования математических моделей.

Основными причинами неприятия любого новшества, как уверяют психологи, являются непонимание его сущности, незнание особенностей и неумение его применять.

Существующий порядок применения СПО АСУВ подразумевает, что должностное лицо - пользователь АСУВ достоверно знает принятые при разработке СПО ограничения и допущения, границы применимости математических моделей из состава СПО. Именно в этих границах проводятся проверки и испытания элементов СПО, подтверждающие его работоспособность и адекватность. Это в полной мере относится к математическим моделям как составной части СПО. Теоретически должностные лица ОВУ, применяющие компоненты СПО в своей практической деятельности, должны понять границы применимости математической модели при внимательном изучении эксплуатационной документации на составляющие части СПО. Понять, запомнить и всегда ими руководствоваться. К сожалению, эта идеальная ситуация на практике реализуется не всегда, в первую очередь из-за несовершенства организации процесса обучения должностных лиц ОВУ работе на средствах автоматизации.

Еще одна проблема - проблема разделения ответственности за принимаемые решения между пользователем модели и разработчиком ее математического аппарата. Если в технических системах разделение ответственности за ошибки эксплуатации между разработчиком и пользователем прописано в соответствующих ГОСТах и технических регламентах, то для программных средств таких документов пока нет. Высокая степень ответственности должностных лиц ОВУ за результаты своей деятельности вкупе с неуверенным пониманием границ применимости моделей порождает у должностных лиц определенные опасения при использовании математического моделирования в практике планирования реальных операций (боевых действий). Без решения этой проблемы обеспечить полноценное использование математического моделирования в практике работы ОВУ невозможно.

Существенно влияет на внедрение математического моделирования в практику деятельности ОВУ нерациональность компоновки интерфейсов создаваемых промышленностью математических моделей. В настоящее время при разработке программ этому аспекту уделяется недостаточно внимания. Не добавляют оптимизма инженерная психология и эргономика: занимаются они преимущественно режимами работы оператора и оборудованием рабочих мест, но не качеством интерфейсов программ.

В то же время с развитием информационных технологий, повышением возможностей вычислительной техники звеном, замедляющим принятие решений в автоматизированных системах управления, все чаще становится человек. И причиной здесь является интерфейс программы, тормозящий как процесс ввода исходных данных, так и анализ результатов моделирования. Ведь именно интерфейс - основной элемент общения пользователя и программы. Зачастую именно удобством интерфейса определяется, будет ли пользователь в критические моменты обращаться к программе, сможет ли он быстро провести расчеты и проанализировать их результаты.

Плохо, что творческая и «штучная» работа по созданию интерфейсов программ и выработке подходов по их унификации, выполнить которую может только специалист с широким оперативным и техническим кругозором, вообще не относится к научной деятельности. При этом отсутствие унифицированных подходов к интерфейсной реализации математических моделей и информационно-расчетных задач существенно снижает их пользовательские свойства, затрудняет освоение должностными лицами и внедрение в деятельность ОВУ.

В соответствии с руководящими документами в создании интерфейсов моделей и задач из состава СПО АСУВ принимают участие две категории разработчиков: сотрудники НИУ Министерства обороны, ведущие военно-научное сопровождение создания АСУВ, и разработчики программного обеспечения на предприятиях промышленности. Все они как минимум специалисты в использовании компьютерных технологий. Но эти навыки могут играть и отрицательную роль. Специалист неосознанно создает интерфейс модели «под себя», а не под офицера штаба, работающего в условиях жесткого дефицита времени и являющегося специалистом в военной области. Да и логика программиста зачастую отличается от логики обычного человека. Недаром шутят, что нормальный человек считает, что в килобайте 1000 байт, а программист уверен, что в килограмме 1024 грамма. В результате этих различий простота интерфейса при разработке часто жертвуется в угоду некоторым дополнительным качествам и возможностям, которые кажутся необходимыми программисту. Как следствие - трудности в освоении интерфейсов моделей и задач должностными лицами ОВУ, нежелание работать с ними при решении практических задач.

Устранить негативное влияние данного фактора можно только изменением существующего порядка разработки СМПО, обеспечив более тесное участие в процессе разработки конечного пользователя математической модели. Для этого целесообразно ввести обязательный этап (этапы) опытной эксплуатации элементов СПО в макетном исполнении с привлечением должностных лиц ОВУ. По итогам этапа необходимо предусматривать доработку элементов СПО в части организации интерфейса программ. Кстати, мировой опыт разработки программных средств показывает, что любая используемая при этом технология (каскадная, спиральная или макетная) обязательно содержит этап макетирования, по результатам которого дорабатывается программное обеспечение, в том числе его интерфейсная часть.

Немаловажно и личное отношение каждого должностного лица к результатам математического моделирования. Отношение это может выражаться в общем недоверии к результатам, полученным с применением неизвестного математического аппарата, и формироваться в ходе «общения» с моделями. На последнем следует остановиться особо.

Не секрет, что порой должностные лица ОВУ, не удовлетворенные результатами моделирования, пытаются различными способами их скорректировать. Хорошо знающий модель пользователь (оператор) может «сыграть» различными факторами так, чтобы повлиять на результаты в нужную сторону. Когда же он становится лицом, принимающим решение, у него создается мнение, что модель может показать любой результат, было бы только желание. Мнение это глубоко ошибочное и возникает от незнания особенностей математического моделирования. Да, результат моделирования можно слегка подкорректировать, изменив какие-либо исходные условия организации действий противоборствующих группировок, относящиеся к категории неопределенных и выбираемых оператором в установленных границах. Но вот подтасовать результаты, не меняя исходные данные, невозможно, особенно, если модель используется для сравнительного анализа вариантов применения войск (сил) при прочих равных условиях. Сами результаты могут меняться, а вот тенденцию изменения ситуации модель все равно покажет верную.

Подход к разрешению этой ситуации, на наш взгляд, тот же - привлечение должностных лиц к разработке математического аппарата, который закладывается в СМПО, создаваемое для автоматизации их деятельности. В первую очередь это относится к формализации моделируемого процесса и формированию системы допусков и ограничений.

Привлечение должностных лиц ОВУ к разработке СМПО, в частности для описания аппарата математических моделей, является непростым путем. Это требует от заказчика и промышленности определенных усилий не только технического, но и организационного, а порой и образовательного плана. Но имеющийся в 27 ЦНИИ Минобороны практический опыт подобной работы свидетельствует о эффективности такого метода. Разработка ряда методик оперативных расчетов совместно с офицерами ОВУ показала, что впоследствии программные средства, реализующие совместно созданный математический аппарат, воспринимаются должностными лицами намного лучше. Знание применяемого в программных средствах математического аппарата, границ его применимости обеспечивает доверие к результатам моделирования.

Таким образом, анализ субъективных факторов, мешающих применению математического моделирования в практической работе ОВУ, показывает, что имеющиеся недостатки являются системными. Они не зависят от конкретного разработчика СПО и выбранного им подхода к созданию СПО АСУВ: функционального, структурного или процессного. Для их устранения необходимо менять порядок как создания математических моделей, вводя обязательные этапы, предусматривающие участие будущих пользователей моделей в их разработке, так и порядок подготовки должностных лиц ОВУ к работе с ними.

Кроме того, стоит остановиться еще на одном субъективном факторе недоверия к математическому моделированию, возникающему в случаях, когда представители промышленности необоснованно часто дорабатывают математические модели или пытаются их внедрять там, где в этом нет объективной необходимости.

Анализ зарубежного опыта показывает, что наиболее приемлемым является постепенное наращивание возможностей математических моделей за счет их модернизации без кардинальной переделки математического «ядра» и, конечно, применение математического моделирования для планирования операций (боевых действий) только там, где это действительно необходимо, где для этого есть условия. К сожалению, у нас нередко все происходит с точностью до наоборот. Необоснованно частая доработка моделей, распространение математического моделирования на сферы, где оно не применимо (например, на уровень «батальон - рота (батарея) - взвод»), субъективно снижает доверие к процессу применения моделей при планировании военных действий, дискредитирует саму идею математического моделирования.

Итак, в целях уменьшения негативного влияния субъективных факторов на применение математического моделирования в практике работы ОВУ необходимо повысить знания и умения пользователей СМПО и преодолеть нежелание разработчиков учесть их требования (преодолеть под твердым руководством заказчика АСУВ, при помощи ОВУ и организаций, осуществляющих военно-научное сопровождение работ).

Для этого необходимо:

совершенствование порядка разработки математических моделей, включение в процесс разработки обязательных этапов макетирования и апробации макетов в ОВУ; изменение отношения (повышенное внимание) к созданию программных интерфейсов математических моделей из состава СМПО АСУВ;

корректировка руководящих документов, определяющих содержание этапов разработки математических моделей;

оптимизация процесса подготовки должностных лиц, применяющих математические модели в составе СПО комплектов средств автоматизации пунктов управления.

Реализация этих мероприятий позволит математическому моделированию занять достойное, подобающее ему место в процессе организации операций (боевых действий) и управлении войсками (силами).

Военная Мысль. 2009. № 7. С. 12-20.

Военная Мысль. 2009. № 9. С. 43-53.

Зарубежное военное обозрение. 2006. № 6. С. 17-23; 2008. № 11. С. 27-32.

Для комментирования необходимо зарегистрироваться на сайте

Виктор Кулигин

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью, наглядностью и конкретностью, но и иметь эвристическую ценность.

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

а) Модели, опирающиеся на временной подход (эволюционные модели). Здесь главное внимание акцентируется на временной стороне причинно-следственных отношений. Одно событие – «причина» – порождает другое событие – «следствие», которое во времени отстает от причины (запаздывает). Запаздывание – отличительный признак эволюционного подхода. Причина и следствие взаимообусловлены. Однако ссылка на порождение следствия причиной (генезис), хотя и законна, но привносится в определение причинно-следственной связи как бы со стороны, извне. Она фиксирует внешнюю сторону этой связи, не захватывая глубоко сущности.

Эволюционный подход развивался Ф. Бэконом, Дж. Миллем и др. Крайней полярной точкой эволюционного подхода явилась позиция Юма. Юм игнорировал генезис, отрицая объективный характер причинности, и сводил причинную связь к простой регулярности событий.

б) Модели, опирающиеся на понятие «взаимодействие» (структурные или диалектические модели). Смысл названий мы выясним позже. Главное внимание здесь уделяется взаимодействию как источнику причинно-следственных отношений. В роли причины выступает само взаимодействие. Большое внимание этому подходу уделял Кант, но наиболее четкую форму диалектический подход к причинности приобрел в работах Гегеля. Из современных советских философов этот подход развивал Г.А. Свечников , который стремился дать материалистическую трактовку одной из структурных моделей причинно-следственной связи.

Существующие и использующиеся в настоящее время модели различным образом вскрывают механизм причинно-следственных отношений, что приводит к разногласиям и создает основу для философских дискуссий. Острота обсуждения и полярный характер точек зрения свидетельствуют об их актуальности .

Выделим некоторые из дискутируемых проблем.

а) Проблема одновременности причины и следствия. Это основная проблема. Одновременны ли причина и следствие или разделены интервалом времени? Если причина и следствие одновременны, то почему причина порождает следствие, а не наоборот? Если же причина и следствие неодновременны, может ли существовать «чистая» причина, т.е. причина без следствия, которое еще не наступило, и «чистое» следствие, когда действие причины кончилось, а следствие еще продолжается? Что происходит в интервале между причиной и следствием, если они разделены во времени, и т.д.?

б) Проблема однозначности причинно-следственных отношений. Порождает ли одна и та же причина одно и то же следствие или же одна причина может порождать любое следствие из нескольких потенциально возможных? Может ли одно и то же следствие быть порожденным любой из нескольких причин?

в) Проблема обратного воздействия следствия на свою причину.

г) Проблема связи причины, повода и условий. Могут ли при определенных обстоятельствах причина и условие меняться ролями: причина стать условием, а условие – причиной? Какова объективная взаимосвязь и отличительные признаки причины, повода и условия?

Решение этих проблем зависит от выбранной модели, т.е. в значительной степени от того, какое содержание будет заложено в исходные категории «причина» и «следствие». Дефиниционный характер многих трудностей проявляется, например, уже в том, что нет единого ответа на вопрос, что следует понимать под «причиной». Одни исследователи под причиной мыслят материальный объект, другие – явление, третьи – изменение состояния, четвертые – взаимодействие и т.д.

К решению проблемы не ведут попытки выйти за рамки модельного представления и дать общее, универсальное определение причинно-следственной связи. В качестве примера можно привести следующее определение: «Причинность – это такая генетическая связь явлений, в которой одно явление, называемое причиной, при наличии определенных условий неизбежно порождает, вызывает, приводит к жизни другое явление, называемое следствием» . Это определение формально справедливо для большинства моделей, но, не опираясь на модель, оно не может разрешить поставленных проблем (например, проблему одновременности) и потому имеет ограниченную теоретико-познавательную ценность.

Решая упомянутые выше проблемы, большинство авторов стремятся исходить из современной физической картины мира и, как правило, несколько меньше внимания уделяют гносеологии. Между тем, на наш взгляд, здесь существуют две проблемы, имеющие важное значение: проблема удаления элементов антропоморфизма из понятия причинности и проблема непричинных связей в естествознании. Суть первой проблемы в том, что причинность как объективная философская категория должна иметь объективный характер, не зависящий от познающего субъекта и его активности. Суть второй проблемы: признавать ли причинные связи в естествознании всеобщими и универсальными или считать, что такие связи имеют ограниченный характер и существуют связи непричинного типа, отрицающие причинность и ограничивающие пределы применимости принципа причинности? Мы считаем, что принцип причинности имеет всеобщий и объективный характер и его применение не знает ограничений.

Итак, два типа моделей, объективно отражая некоторые важные стороны и черты причинно-следственных связей, находятся в известной степени в противоречии, поскольку различным образом решают проблемы одновременности, однозначности и др., но вместе с тем, объективно отражая некоторые стороны причинно-следственных отношений, они должны находиться во взаимной связи. Наша первая задача – выявить эту связь и уточнить модели.

Граница применимости моделей

Попытаемся установить границу применимости моделей эволюционного типа. Причинно-следственные цепи, удовлетворяющие эволюционным моделям, как правило, обладают свойством транзитивности . Если событие А есть причина события В (В – следствие А), если, в свою очередь, событие В есть причина события С, то событие А есть причина события С. Если А → В и В → С, то А → С. Таким способом составляются простейшие причинно-следственные цепи. Событие В может выступать в одном случае причиной, в другом – следствием. Эту закономерность отмечал Ф. Энгельс: «... причина и следствие суть представления, которые имеют значение, как таковые, только в применении к данному отдельному случаю: но как только мы будем рассматривать этот отдельный случай в общей связи со всем мировым целым, эти представления сходятся и переплетаются в представлении универсального взаимодействия, в котором причины и следствия постоянно меняются местами; то, что здесь или теперь является причиной, становится там или тогда следствием и наоборот» (т. 20, с. 22).

Свойство транзитивности позволяет провести детальный анализ причинной цепи. Он состоит в расчленении конечной цепи на более простые причинно-следственные звенья. Если А, то А → В1, В1 → В2,..., Вn → C. Но обладает ли конечная причинно-следственная цепь свойством бесконечной делимости? Может ли число звеньев конечной цепи N стремиться к бесконечности?

Опираясь на закон перехода количественных изменений в качественные, можно утверждать, что при расчленении конечной причинно-следственной цепи мы столкнемся с таким содержанием отдельных звеньев цепи, когда дальнейшее деление станет бессмысленным. Заметим, что бесконечную делимость, отрицающую закон перехода количественных изменений в качественные, Гегель именовал «дурной бесконечностью»

Переход количественных изменений в качественные возникает, например, при делении куска графита. При разъединении молекул вплоть до образования одноатомного газа химический состав не меняется. Дальнейшее деление вещества без изменения его химического состава уже невозможно, поскольку следующий этап – расщепление атомов углерода. Здесь с физико-химической точки зрения количественные изменения приводят к качественным.

В приведенном выше высказывании Ф. Энгельса отчетливо прослеживается мысль о том, что в основе причинно-следственных связей лежит не самопроизвольное волеизъявление, не прихоть случая и не божественный перст, а универсальное взаимодействие. В природе нет самопроизвольного возникновения и уничтожения движения, есть взаимные переходы одних форм движения материи в другие, от одних материальных объектов к другим, и эти переходы не могут происходить иначе, чем через посредство взаимодействия материальных объектов. Такие переходы, обусловленные взаимодействием, порождают новые явления, изменяя состояние взаимодействующих объектов.

Взаимодействие универсально и составляет основу причинности. Как справедливо отмечал Гегель, «взаимодействие есть причинное отношение, положенное в его полном развитии» . Еще более четко сформулировал эту мысль Ф. Энгельс: «Взаимодействие – вот первое, что выступает перед нами, когда мы рассматриваем движущуюся материю в целом с точки, зрения теперешнего естествознания... Так естествознанием подтверждается то... что взаимодействие является истинной causa finalis вещей. Мы не можем пойти дальше познания этого взаимодействия именно потому, что позади его нечего больше познавать» (т. 20, с. 546).

Поскольку взаимодействие составляет основу причинности, рассмотрим взаимодействие двух материальных объектов, схема которого приведена на рис. 1. Данный пример не нарушает общности рассуждений, поскольку взаимодействие нескольких объектов сводится к парным взаимодействиям и может быть рассмотрено аналогичным способом.

Нетрудно видеть, что при взаимодействии оба объекта одновременно воздействуют друг на друга (взаимность действия). При этом происходит изменение состояния каждого из.взаимодействующих объектов. Нет взаимодействия – нет изменения состояния . Поэтому изменение состояния какого-либо одного из взаимодействующих объектов можно рассматривать как частное следствие причины – взаимодействия. Изменение состояний всех объектов в их совокупности составит полное следствие.

Очевидно, что такая причинно-следственная модель элементарного звена эволюционной модели принадлежит классу структурных (диалектических). Следует подчеркнуть, что данная модель не сводится к подходу, развивавшемуся Г.А. Свечниковым, поскольку под следствием Г.А. Свечников, по словам В.Г. Иванова, понимал «...изменение одного или всех взаимодействовавших объектов или изменение характера самого взаимодействия, вплоть до его распада или преобразования» . Что касается изменения состояний, то это изменение Г.А. Свечников относил к непричинному виду связи.

Итак, мы установили, что эволюционные модели в качестве элементарного, первичного звена содержат структурную (диалектическую) модель, опирающуюся на взаимодействие и изменение состояний. Несколько позже мы вернемся к анализу взаимной связи, этих моделей и исследованию свойств эволюционной модели. Здесь нам хотелось бы отметить, что в полном соответствии с точкой зрения Ф. Энгельса смена явлений в эволюционных моделях, отражающих объективную реальность, происходит не в силу простой регулярности событий (как у Д. Юма), а в силу обусловленности, порожденной взаимодействием (генезис). Поэтому хотя ссылки на порождение (генезис) и привносятся в определение причинно-следственных отношений в эволюционных моделях, но они отражают объективную природу этих отношений и имеют законное основание.

Pис. 2. Структурная (диалектическая) модель причинности

Вернемся к структурной модели. По своей структуре и смыслу она превосходно согласуется с первым законом диалектики – законом единства и борьбы противоположностей, если интерпретировать:

– единство – как существование объектов в их взаимной связи (взаимодействии);

– противоположности – как взаимоисключающие тенденции и характеристики состояний, обусловленные взаимодействием;

– борьбу – как взаимодействие;

– развитие – как изменение состояния каждого из взаимодействующих материальных объектов.

Поэтому структурная модель, опирающаяся на взаимодействие как причину, может быть названа также диалектической моделью причинности. Из аналогии структурной модели и первого закона диалектики следует, что причинность выступает как отражение объективных диалектических противоречий в самой природе, в отличие от субъективных диалектических противоречий, возникающих в сознании человека. Структурная модель причинности есть отражение объективной диалектики природы.

Рассмотрим пример, иллюстрирующий применение структурной модели причинно-следственных отношений. Таких примеров, которые объясняются с помощью данной модели, можно найти достаточно много в естественных науках (физике, химии и др.), поскольку понятие «взаимодействие» является основополагающим в естествознании.

Возьмем в качестве примера упругое столкновение двух шаров: движущегося шара А и неподвижного шара В. До столкновения состояние каждого из шаров определялось совокупностью признаков Сa и Сb (импульс, кинетическая энергия и т.д.). После столкновения (взаимодействия) состояния этих шаров изменились. Обозначим новые состояния С"a и С"b. Причиной изменения состояний (Сa → С"a и Сb → С"b) явилось взаимодействие шаров (столкновение); следствием этого столкновения стало изменение состояния каждого шара.

Как уже говорилось, эволюционная модель в данном случае малопригодна, поскольку мы имеем дело не с причинной цепью, а с элементарным причинно-следственным звеном, структура которого не сводится к эволюционной модели. Чтобы показать это, проиллюстрируем данный пример объяснением с позиции эволюционной модели: «До столкновения шар А покоился, поэтому причиной его движения является шар В, который ударил по нему». Здесь шар В выступает причиной, а движение шара А – следствием. Но с тех же самых позиций можно дать и такое объяснение: «До столкновения шар В двигался равномерно по прямолинейной траектории. Если бы не шар А, то характер движения шара В не изменился бы». Здесь причиной уже выступает шар А, а следствием – состояние шара В. Приведенный пример показывает:

а) определенную субъективность, которая возникает при применении эволюционной модели за пределами границ ее применимости: причиной может выступать либо шар А, либо шар В; такое положение связано с тем, что эволюционная модель выхватывает одну частную ветвь следствия и ограничивается ее интерпретацией;

б) типичную гносеологическую ошибку. В приведенных выше объяснениях с позиции эволюционной модели один из однотипных материальных объектов выступает в качестве «активного», а другой – в качестве «страдательного» начала. Получается так, будто один из шаров наделен (по сравнению с другим) «активностью», «волей», «желанием», подобно человеку. Следовательно, только благодаря этой «воле» мы и имеем причинное отношение. Подобная гносеологическая ошибка определяется не только моделью причинности, но и образностью, присущей живой человеческой речи, и типичным психологическим переносом свойств, характерных для сложной причинности (о ней мы будем говорить ниже) на простое причинно-следственное звено. И такие ошибки весьма характерны при использовании эволюционной модели за пределами границ ее применимости. Они встречаются в некоторых определениях причинности. Например: «Итак, причинность определяется как такое воздействие одного объекта на другой, при котором изменение первого объекта (причина) предшествует изменению другого объекта и необходимым, однозначным образом порождает изменение другого объекта (следствие)» . Трудно согласиться с таким определением, поскольку совершенно не ясно, почему при взаимодействии (взаимном действии!) объекты должны деформироваться не одновременно, а друг за другом? Какой из объектов должен деформироваться первым, а какой вторым (проблема приоритета)?

Качества модели

Рассмотрим теперь, какие качества удерживает в себе структурная модель причинности. Отметим среди них следующие: объективность, универсальность, непротиворечивость, однозначность.

Объективность причинности проявляется в том, что взаимодействие выступает как объективная причина, по отношению к которой взаимодействующие объекты являются равноправными. Здесь не остается возможности для антропоморфного истолкования. Универсальность обусловлена тем, что в основе причинности всегда лежит взаимодействие. Причинность универсальна, как универсально само взаимодействие. Непротиворечивость обусловлена тем, что, хотя причина и следствие (взаимодействие и изменение состояний) совпадают во времени, они отражают различные стороны причинно-следственных отношений. Взаимодействие предполагает пространственную связь объектов, изменение состояния – связь состояний каждого из взаимодействующих объектов во времени.

Помимо этого структурная модель устанавливает однозначную связь в причинно-следственных отношениях независимо от способа математического описания взаимодействия. Более того, структурная модель, будучи объективной и универсальной, не предписывает естествознанию ограничений на характер взаимодействий. В рамках данной модели справедливы и мгновенное дально- или близкодействие, и взаимодействие с любыми конечными скоростями. Появление подобного ограничения в определении причинно-следственных отношений явилось бы типичной метафизической догмой, раз и навсегда постулирующей характер взаимодействия любых систем, навязывая физике и другим наукам натурфилософские рамки со стороны философии, либо ограничило пределы применимости модели настолько, что польза от такой модели оказалась бы весьма скромной.

Здесь уместно было бы остановиться на вопросах, связанных с конечностью скорости распространения взаимодействий. Рассмотрим пример. Пусть имеются два неподвижных заряда. Если один из зарядов начал двигаться с ускорением, то электромагнитная волна подойдет ко второму заряду с запаздыванием. Не противоречит ли данный пример структурной модели и, в частности, свойству взаимности действия, поскольку при

Похожие рефераты:

Время в динамике процессов. Формирование стрелы времени.

Идеальная модель гибкой технологии проектирования (ГТП). Цели исследования в ГТП - принципы диалектического метода познания. Принципы диалектического метода познания. Система модулей ГТП.

Адроны, в отличие от лептонов (например, электрона), фотонов и векторных бозонов (переносчиков слабого взаимодействия), не относятся к истинно элементарным частицам, а состоят из более фундаментальных микроскопических объектов - кварков и глюонов.

Рассмотрена общая схема эволюции материи (от "элементарных" взаимодействий до уровня социальных связей). Обосновывается утверждение об отсутствии как сторонней "направляющей силы", так и универсального критерия направленности развития.

Все беспредельное многообразие явлений природы сведено в современной физике к четырем фундаментальным взаимодействиям. Первым был открыт закон всемирного тяготения, затем – электромагнитные, и наконец –сильные (ядерные) и слабые взаимодействия.

Виктор Кулигин

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью, наглядностью и конкретностью, но и иметь эвристическую ценность.

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

а) Модели, опирающиеся на временной подход (эволюционные модели). Здесь главное внимание акцентируется на временной стороне причинно-следственных отношений. Одно событие – «причина» – порождает другое событие – «следствие», которое во времени отстает от причины (запаздывает). Запаздывание – отличительный признак эволюционного подхода. Причина и следствие взаимообусловлены. Однако ссылка на порождение следствия причиной (генезис), хотя и законна, но привносится в определение причинно-следственной связи как бы со стороны, извне. Она фиксирует внешнюю сторону этой связи, не захватывая глубоко сущности.

Эволюционный подход развивался Ф. Бэконом, Дж. Миллем и др. Крайней полярной точкой эволюционного подхода явилась позиция Юма. Юм игнорировал генезис, отрицая объективный характер причинности, и сводил причинную связь к простой регулярности событий.

б) Модели, опирающиеся на понятие «взаимодействие» (структурные или диалектические модели). Смысл названий мы выясним позже. Главное внимание здесь уделяется взаимодействию как источнику причинно-следственных отношений. В роли причины выступает само взаимодействие. Большое внимание этому подходу уделял Кант, но наиболее четкую форму диалектический подход к причинности приобрел в работах Гегеля. Из современных советских философов этот подход развивал Г.А. Свечников , который стремился дать материалистическую трактовку одной из структурных моделей причинно-следственной связи.

Существующие и использующиеся в настоящее время модели различным образом вскрывают механизм причинно-следственных отношений, что приводит к разногласиям и создает основу для философских дискуссий. Острота обсуждения и полярный характер точек зрения свидетельствуют об их актуальности .

Выделим некоторые из дискутируемых проблем.

а) Проблема одновременности причины и следствия. Это основная проблема. Одновременны ли причина и следствие или разделены интервалом времени? Если причина и следствие одновременны, то почему причина порождает следствие, а не наоборот? Если же причина и следствие неодновременны, может ли существовать «чистая» причина, т.е. причина без следствия, которое еще не наступило, и «чистое» следствие, когда действие причины кончилось, а следствие еще продолжается? Что происходит в интервале между причиной и следствием, если они разделены во времени, и т.д.?

б) Проблема однозначности причинно-следственных отношений. Порождает ли одна и та же причина одно и то же следствие или же одна причина может порождать любое следствие из нескольких потенциально возможных? Может ли одно и то же следствие быть порожденным любой из нескольких причин?

в) Проблема обратного воздействия следствия на свою причину.

г) Проблема связи причины, повода и условий. Могут ли при определенных обстоятельствах причина и условие меняться ролями: причина стать условием, а условие – причиной? Какова объективная взаимосвязь и отличительные признаки причины, повода и условия?

Решение этих проблем зависит от выбранной модели, т.е. в значительной степени от того, какое содержание будет заложено в исходные категории «причина» и «следствие». Дефиниционный характер многих трудностей проявляется, например, уже в том, что нет единого ответа на вопрос, что следует понимать под «причиной». Одни исследователи под причиной мыслят материальный объект, другие – явление, третьи – изменение состояния, четвертые – взаимодействие и т.д.

К решению проблемы не ведут попытки выйти за рамки модельного представления и дать общее, универсальное определение причинно-следственной связи. В качестве примера можно привести следующее определение: «Причинность – это такая генетическая связь явлений, в которой одно явление, называемое причиной, при наличии определенных условий неизбежно порождает, вызывает, приводит к жизни другое явление, называемое следствием» . Это определение формально справедливо для большинства моделей, но, не опираясь на модель, оно не может разрешить поставленных проблем (например, проблему одновременности) и потому имеет ограниченную теоретико-познавательную ценность.

Решая упомянутые выше проблемы, большинство авторов стремятся исходить из современной физической картины мира и, как правило, несколько меньше внимания уделяют гносеологии. Между тем, на наш взгляд, здесь существуют две проблемы, имеющие важное значение: проблема удаления элементов антропоморфизма из понятия причинности и проблема непричинных связей в естествознании. Суть первой проблемы в том, что причинность как объективная философская категория должна иметь объективный характер, не зависящий от познающего субъекта и его активности. Суть второй проблемы: признавать ли причинные связи в естествознании всеобщими и универсальными или считать, что такие связи имеют ограниченный характер и существуют связи непричинного типа, отрицающие причинность и ограничивающие пределы применимости принципа причинности? Мы считаем, что принцип причинности имеет всеобщий и объективный характер и его применение не знает ограничений.

Итак, два типа моделей, объективно отражая некоторые важные стороны и черты причинно-следственных связей, находятся в известной степени в противоречии, поскольку различным образом решают проблемы одновременности, однозначности и др., но вместе с тем, объективно отражая некоторые стороны причинно-следственных отношений, они должны находиться во взаимной связи. Наша первая задача – выявить эту связь и уточнить модели.

Граница применимости моделей

Попытаемся установить границу применимости моделей эволюционного типа. Причинно-следственные цепи, удовлетворяющие эволюционным моделям, как правило, обладают свойством транзитивности . Если событие А есть причина события В (В – следствие А), если, в свою очередь, событие В есть причина события С, то событие А есть причина события С. Если А → В и В → С, то А → С. Таким способом составляются простейшие причинно-следственные цепи. Событие В может выступать в одном случае причиной, в другом – следствием. Эту закономерность отмечал Ф. Энгельс: «... причина и следствие суть представления, которые имеют значение, как таковые, только в применении к данному отдельному случаю: но как только мы будем рассматривать этот отдельный случай в общей связи со всем мировым целым, эти представления сходятся и переплетаются в представлении универсального взаимодействия, в котором причины и следствия постоянно меняются местами; то, что здесь или теперь является причиной, становится там или тогда следствием и наоборот» (т. 20, с. 22).

Свойство транзитивности позволяет провести детальный анализ причинной цепи. Он состоит в расчленении конечной цепи на более простые причинно-следственные звенья. Если А, то А → В 1 , В 1 → В 2 ,..., В n → C. Но обладает ли конечная причинно-следственная цепь свойством бесконечной делимости? Может ли число звеньев конечной цепи N стремиться к бесконечности?

Опираясь на закон перехода количественных изменений в качественные, можно утверждать, что при расчленении конечной причинно-следственной цепи мы столкнемся с таким содержанием отдельных звеньев цепи, когда дальнейшее деление станет бессмысленным. Заметим, что бесконечную делимость, отрицающую закон перехода количественных изменений в качественные, Гегель именовал «дурной бесконечностью»

Переход количественных изменений в качественные возникает, например, при делении куска графита. При разъединении молекул вплоть до образования одноатомного газа химический состав не меняется. Дальнейшее деление вещества без изменения его химического состава уже невозможно, поскольку следующий этап – расщепление атомов углерода. Здесь с физико-химической точки зрения количественные изменения приводят к качественным.

В приведенном выше высказывании Ф. Энгельса отчетливо прослеживается мысль о том, что в основе причинно-следственных связей лежит не самопроизвольное волеизъявление, не прихоть случая и не божественный перст, а универсальное взаимодействие. В природе нет самопроизвольного возникновения и уничтожения движения, есть взаимные переходы одних форм движения материи в другие, от одних материальных объектов к другим, и эти переходы не могут происходить иначе, чем через посредство взаимодействия материальных объектов. Такие переходы, обусловленные взаимодействием, порождают новые явления, изменяя состояние взаимодействующих объектов.

Взаимодействие универсально и составляет основу причинности. Как справедливо отмечал Гегель, «взаимодействие есть причинное отношение, положенное в его полном развитии» . Еще более четко сформулировал эту мысль Ф. Энгельс: «Взаимодействие – вот первое, что выступает перед нами, когда мы рассматриваем движущуюся материю в целом с точки, зрения теперешнего естествознания... Так естествознанием подтверждается то... что взаимодействие является истинной causa finalis вещей. Мы не можем пойти дальше познания этого взаимодействия именно потому, что позади его нечего больше познавать» (т. 20, с. 546).

Поскольку взаимодействие составляет основу причинности, рассмотрим взаимодействие двух материальных объектов, схема которого приведена на рис. 1. Данный пример не нарушает общности рассуждений, поскольку взаимодействие нескольких объектов сводится к парным взаимодействиям и может быть рассмотрено аналогичным способом.

Нетрудно видеть, что при взаимодействии оба объекта одновременно воздействуют друг на друга (взаимность действия). При этом происходит изменение состояния каждого из.взаимодействующих объектов. Нет взаимодействия – нет изменения состояния . Поэтому изменение состояния какого-либо одного из взаимодействующих объектов можно рассматривать как частное следствие причины – взаимодействия. Изменение состояний всех объектов в их совокупности составит полное следствие.

Очевидно, что такая причинно-следственная модель элементарного звена эволюционной модели принадлежит классу структурных (диалектических). Следует подчеркнуть, что данная модель не сводится к подходу, развивавшемуся Г.А. Свечниковым, поскольку под следствием Г.А. Свечников, по словам В.Г. Иванова, понимал «...изменение одного или всех взаимодействовавших объектов или изменение характера самого взаимодействия, вплоть до его распада или преобразования» . Что касается изменения состояний, то это изменение Г.А. Свечников относил к непричинному виду связи.

Итак, мы установили, что эволюционные модели в качестве элементарного, первичного звена содержат структурную (диалектическую) модель, опирающуюся на взаимодействие и изменение состояний. Несколько позже мы вернемся к анализу взаимной связи, этих моделей и исследованию свойств эволюционной модели. Здесь нам хотелось бы отметить, что в полном соответствии с точкой зрения Ф. Энгельса смена явлений в эволюционных моделях, отражающих объективную реальность, происходит не в силу простой регулярности событий (как у Д. Юма), а в силу обусловленности, порожденной взаимодействием (генезис). Поэтому хотя ссылки на порождение (генезис) и привносятся в определение причинно-следственных отношений в эволюционных моделях, но они отражают объективную природу этих отношений и имеют законное основание.

Pис. 2. Структурная (диалектическая) модель причинности

Вернемся к структурной модели. По своей структуре и смыслу она превосходно согласуется с первым законом диалектики – законом единства и борьбы противоположностей, если интерпретировать:

– единство – как существование объектов в их взаимной связи (взаимодействии);

– противоположности – как взаимоисключающие тенденции и характеристики состояний, обусловленные взаимодействием;

– борьбу – как взаимодействие;

– развитие – как изменение состояния каждого из взаимодействующих материальных объектов.

Поэтому структурная модель, опирающаяся на взаимодействие как причину, может быть названа также диалектической моделью причинности. Из аналогии структурной модели и первого закона диалектики следует, что причинность выступает как отражение объективных диалектических противоречий в самой природе, в отличие от субъективных диалектических противоречий, возникающих в сознании человека. Структурная модель причинности есть отражение объективной диалектики природы.

Рассмотрим пример, иллюстрирующий применение структурной модели причинно-следственных отношений. Таких примеров, которые объясняются с помощью данной модели, можно найти достаточно много в естественных науках (физике, химии и др.), поскольку понятие «взаимодействие» является основополагающим в естествознании.

Возьмем в качестве примера упругое столкновение двух шаров: движущегося шара А и неподвижного шара В. До столкновения состояние каждого из шаров определялось совокупностью признаков Сa и Сb (импульс, кинетическая энергия и т.д.). После столкновения (взаимодействия) состояния этих шаров изменились. Обозначим новые состояния С"a и С"b. Причиной изменения состояний (Сa → С"a и Сb → С"b) явилось взаимодействие шаров (столкновение); следствием этого столкновения стало изменение состояния каждого шара.

Как уже говорилось, эволюционная модель в данном случае малопригодна, поскольку мы имеем дело не с причинной цепью, а с элементарным причинно-следственным звеном, структура которого не сводится к эволюционной модели. Чтобы показать это, проиллюстрируем данный пример объяснением с позиции эволюционной модели: «До столкновения шар А покоился, поэтому причиной его движения является шар В, который ударил по нему». Здесь шар В выступает причиной, а движение шара А – следствием. Но с тех же самых позиций можно дать и такое объяснение: «До столкновения шар В двигался равномерно по прямолинейной траектории. Если бы не шар А, то характер движения шара В не изменился бы». Здесь причиной уже выступает шар А, а следствием – состояние шара В. Приведенный пример показывает:

а) определенную субъективность, которая возникает при применении эволюционной модели за пределами границ ее применимости: причиной может выступать либо шар А, либо шар В; такое положение связано с тем, что эволюционная модель выхватывает одну частную ветвь следствия и ограничивается ее интерпретацией;

б) типичную гносеологическую ошибку. В приведенных выше объяснениях с позиции эволюционной модели один из однотипных материальных объектов выступает в качестве «активного», а другой – в качестве «страдательного» начала. Получается так, будто один из шаров наделен (по сравнению с другим) «активностью», «волей», «желанием», подобно человеку. Следовательно, только благодаря этой «воле» мы и имеем причинное отношение. Подобная гносеологическая ошибка определяется не только моделью причинности, но и образностью, присущей живой человеческой речи, и типичным психологическим переносом свойств, характерных для сложной причинности (о ней мы будем говорить ниже) на простое причинно-следственное звено. И такие ошибки весьма характерны при использовании эволюционной модели за пределами границ ее применимости. Они встречаются в некоторых определениях причинности. Например: «Итак, причинность определяется как такое воздействие одного объекта на другой, при котором изменение первого объекта (причина) предшествует изменению другого объекта и необходимым, однозначным образом порождает изменение другого объекта (следствие)» . Трудно согласиться с таким определением, поскольку совершенно не ясно, почему при взаимодействии (взаимном действии!) объекты должны деформироваться не одновременно, а друг за другом? Какой из объектов должен деформироваться первым, а какой вторым (проблема приоритета)?

Качества модели

Рассмотрим теперь, какие качества удерживает в себе структурная модель причинности. Отметим среди них следующие: объективность, универсальность, непротиворечивость, однозначность.

Объективность причинности проявляется в том, что взаимодействие выступает как объективная причина, по отношению к которой взаимодействующие объекты являются равноправными. Здесь не остается возможности для антропоморфного истолкования. Универсальность обусловлена тем, что в основе причинности всегда лежит взаимодействие. Причинность универсальна, как универсально само взаимодействие. Непротиворечивость обусловлена тем, что, хотя причина и следствие (взаимодействие и изменение состояний) совпадают во времени, они отражают различные стороны причинно-следственных отношений. Взаимодействие предполагает пространственную связь объектов, изменение состояния – связь состояний каждого из взаимодействующих объектов во времени.

Помимо этого структурная модель устанавливает однозначную связь в причинно-следственных отношениях независимо от способа математического описания взаимодействия. Более того, структурная модель, будучи объективной и универсальной, не предписывает естествознанию ограничений на характер взаимодействий. В рамках данной модели справедливы и мгновенное дально- или близкодействие, и взаимодействие с любыми конечными скоростями. Появление подобного ограничения в определении причинно-следственных отношений явилось бы типичной метафизической догмой, раз и навсегда постулирующей характер взаимодействия любых систем, навязывая физике и другим наукам натурфилософские рамки со стороны философии, либо ограничило пределы применимости модели настолько, что польза от такой модели оказалась бы весьма скромной.

Здесь уместно было бы остановиться на вопросах, связанных с конечностью скорости распространения взаимодействий. Рассмотрим пример. Пусть имеются два неподвижных заряда. Если один из зарядов начал двигаться с ускорением, то электромагнитная волна подойдет ко второму заряду с запаздыванием. Не противоречит ли данный пример структурной модели и, в частности, свойству взаимности действия, поскольку при таком взаимодействии заряды оказываются в неравноправном положении? Нет, не противоречит. Данный пример описывает не простое взаимодействие, а сложную причинную цепь, в которой можно выделить три различных звена.

В следствии общности и широты своих законов, физика всегда оказывала воздействие на развитие философии и сама находилась под ее влиянием. Открывая новые достижения, физика не оставляла философские вопросы: о материи, о движении, об объективности явлений, о пространстве и времени, о причинности и необходимости в природе. Развитие атомистики привело Э.Резерфорда к открытию атомного ядра и к...

Молекулярная физика. Тепловые явления.

Знать/понимать:

- план, руководствуясь которым они должны характеризовать физическую теорию, а именно:

* теоретическое и экспериментальное обоснование теории (опытное обоснование, модели, величины, методы описания);

* формулировки основных положений (законы, постулаты, принципы, основные положения, фундаментальные постоянные);

* следствия теории и факты их экспериментальной проверки (частные законы, применение к решению задач, техническое

применение);

*границы применимости теории;

* примеры практического значения теории и её применений.

Уметь:

*приводить примеры, показывающие, что

- наблюдения и эксперимент являются основой для выдвижения гипотез и теорий;

- эксперимент позволяет проверить истинность теоретических выводов;

- физическая теория даёт возможность объяснить известные явления природы и научные факты;

- физическая теория позволяет предсказывать ещё неизвестные явления, их особенности;

- один и тот же природный объект или процесс можно описать (исследовать) на основе разных моделей;

- законы физики и физические теории имеют определённые границы применимости;

* раскрывать влияние научных идей и теорий на формирование современного мировоззрения; называть значимые черты современной физической картины мира; приводить примеры физических явлений и процессов, изучаемых в теории; иллюстрировать роль физики в создании и (или) совершенствовании важнейших технологических объектов;

* воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической): излагать суть содержания текста учебника по физике; выделять в тексте учебника важнейшие категории научной информации (описание явления или опыта; постановка проблемы; выдвижение гипотезы; моделирование объектов и процессов; формулировка теоретического вывода и его интерпретация; экспериментальная проверка гипотезы или теоретического предсказания); выдвигать гипотезы для объяснения предъявленной системы научных фактов; делать выводы на основе экспериментальных данных, представленных таблицей, графиком или диаграммой.

Учащимся необходимо владеть:


  • Основными понятиями и законами физики: соотносить изучаемые понятия с теми свойствами (особенностями) тел и процессов, для характеристики которых эти понятия введены в физику; описывать опыты, оказавшие существенное влияние на развитие физики; раскрывать смысл изучаемых законов и принципов; описывать преобразования энергии в процессах;

  • Понятиями и представлениями физики, связанными с жизнедеятельностью человека.

Блок - Основы молекулярно-кинетической теории.

При изучении на уровне А (базовый уровень Стандарта, 2 ч/неделю)

В учебнике Мякишева Г.Я., Буховцева Б.Б. теме посвящено 8 параграфов: §56. Основные положения молекулярно-кинетической теории. Размеры молекул. § 57. Масса молекул. Количество вещества. §58. Броуновское движение. §59. Силы взаимодействия молекул. §60. Строение газообразных, жидких и твердых тел. §61. Идеальный газ в молекулярно-кинетической теории. §62. Среднее значение квадрата скорости молекул. §63. Основное уравнение молекулярно-кинетической теории газов.

На изучение темы отводится не более 5 часов.
ДЦМ: ознакомить обучающихся с основными положениями молекулярно-кинетической теории.

Блок состоит из четырех модулей: М1 «Основные положения МКТ. Размеры молекул. Масса молекул. Количество вещества.

Броуновское движение. Силы взаимодействия молекул» (2 урока)

М2 «Строение газообразных, жидких и твердых тел. Идеальный газ в МКТ. Скорость молекул.

Основное уравнение МКТ газов»(2 урока)

М3 «Обобщение и контроль знаний по теме»(1 урок)
Обязательный минимум знаний/ умений/навыков.

Знать:


  • Делимость вещества, парообразование, сублимация, растворимость доказывают, что тело состоит из частиц.(все уровни)

  • Сжимаемость веществ, диффузия свидетельствует, что между частицами вещества есть промежутки. (все уровни)

  • Диффузия и броуновское движение доказывают, что частицы движутся. (все уровни)

  • Зависимость скорости испарений и диффузии от температуры говорит о том, что скорость движения частиц зависит от температуры. (все уровни)

  • Модель идеального газа, кристаллическая решетка твердых тел, модель строения жидкости. (все уровни)

  • Макропараметры: давление, объем, температура. (все уровни)

  • Микропараметры: средний квадрат скорости, концентрация, масса одной молекулы. (все уровни)

Основные положения МКТ: (для всех уровней)


  • все тела состоят из молекул, между которыми есть промежутки;

  • масса тел может меняться дискретно; молекулы непрерывно хаотически движутся;

  • молекулы взаимодействуют (притягиваются или отталкиваются в зависимости от расстояния между частицами)
Фундаментальные постоянные: (для всех уровней)

Уметь определять: (все уровни)

  • молярную массу вещества;

  • относительную молекулярную массу;

  • количество вещества;

  • число молекул вещества в данном количестве вещества;

  • среднее значение квадрата скорости;

  • средний квадрат проекции скорости на оси координат;
выводить:

  • основное уравнение молекулярно-кинетической теории газов.
m 0

Определять (вычислять ): а) размеры молекул, относительную молекулярную массу по формуле М r = 1/ 12 m 0 C , молярную

массу M = m 0 N A (все уровни); количество вещества по формуле (все уровни); число

молекул вещества по формуле (все уровни);

б) среднее значение квадрата скорости по формуле (все уровни);

в) средний квадрат проекции скорости по формуле (все уровни);

г) давление газа на стенку сосуда по формуле (все уровни);

д) давление идеального газа через концентрацию молекул и среднюю кинетическую энергию поступательного

движения (все уровни)

Описывать: опыт Броуна (все уровни ); опыт Перрена (2,3 уровень); вклад Френкеля (3 уровень)

Раскрывать: суть МКТ,

Объяснять : причину броуновского движения, диффузии; (2,3 уровни); условия возникновения сил отталкивания и сил притяжения, природу этих сил (2,3 уровни); строение газообразных тел, скорость молекул в газообразных телах, свойства газообразных тел (все уровни); строение жидкостей, скорость молекул, свойства жидких веществ (все уровни); строение твердых тел, скорость молекул в твердых телах, свойства твердых тел (все уровни);

Модульная программа


Модуль

М1

М2

М3

УЭ0

ДЦМ


Осмыслить основные понятия МКТ, конкретизировать понятие о размерах и массе молекул, углубить и систематизировать знания о количестве вещества. Осознание существования сил взаимодействия молекул.

Осмысление строения газообразных, жидких и твердых тел. Освоение понятия «идеальный газ». Определение скорости молекул. Знакомство с основным уравнением МКТ газов.

Самоконтроль учебных достижений, выявление ошибок, их коррекция

УЭ1

Входной контроль по теме «Основные положения молекулярно-кинетической теории. Размеры и масса молекул. Количество вещества. Броуновское движение».

Строение газообразных тел.

Выполнение дифференцированных заданий для выявления уровня усвоения содержания всех элементов модулей М1-М2.

УЭ2

Представление о строении вещества

Возникновение атомистической теории строения вещества.


Строение жидких тел.

Вклад Я.И. Френкеля.


Подведение итогов.

УЭ3



Строение твердых тел.

УЭ4

Размеры и масса молекул Относительная молекулярная масса, молярная масса и количество вещества

Сложность изучения теории газов и свойств молекул. Модель идеального газа.

.

УЭ5

Беспорядочное движение частиц. Опыты Перрена. Силы взаимодействия молекул.

Давление газа в МКТ.

УЭ6

Выходной контроль

Связь давления со средней кинетической энергией молекул.

УЭ7

Подведение итогов

Вывод основного уравнения МКТ газов

УЭ8

Выходной контроль

УЭ9

Подведение итогов.

Модуль М1. 1 уровень сложности.













Руководство по усвоению учебного материала

ЧДЦ. Составить план изучения модуля и определить основные учебные задачи.



(ИТ, ИД, ИЭ, ДТ, ДД, ДЭ)

1. Просмотрите §56-58. Обратите внимание на выделенные заголовки текста. Отметьте для себя, какие пункты вы знаете хорошо, о чем вы только частично помните, что вам встречается впервые. На основании этого определите ваш собственный путь изучения М1. Для работы воспользуйтесь учебником, если необходимо обращайтесь к учителю за консультацией.

2. Внимательно ознакомьтесь с вопросами, которые вам предстоит рассмотреть при изучении М1.



(1 балл)

2Т.Приведите примеры физических явлений, доказывающих основные положения МКТ.

(1 балл)

(2 балла)

2Д. Рассмотрите при помощи микроскопа движение частиц краски. Опишите увиденное.

(1 балл)


(ИТ,ИД,ИЭ)

(см. Приложение 1)


(ДД,ДТ,ДЭ)
История атомистической теории

(см.

Приложение 1)


1. .Ознакомьтесь с Приложением 1, проследите этапы становления атомистической теории. Запишите основные этапы с указание дат.

(1 балл)

2Т. Приведите примеры физических явлений, доказывающих:

-строение веществ,

- движение частиц

- наличие сил притяжения (отталкивания) между частицами.

(1 балл)

2Э. Прочитайте стихотворение Лукреция Кара «О природе вещей». Какие физические явления описываются в нем? Что доказывается этими строками?

(2 балла)

2Д. Составьте план действий по определению размера молекулы оливкового масла.

(1 балл)


«О природе вещей»

Выслушай то, что скажу, и ты сам, несомненно, признаешь,

Что существуют тела, которых мы видеть не можем…

Стало быть, ветры-тела, но только незримые нами.

Хоть и не видим совсем, как в ноздри они проникают…

И наконец, на морском берегу, развивающем волны,

Платье сыреет всегда, а на солнце, вися, оно сохнет,

Видеть, однако, нельзя, как влага на нем оседает,

Как и не видно того, как она исчезает от зноя.

Значит, дробится вода на такие мельчайшие части,

Что недоступны они совершенно для нашего глаза.


УЭ3. Основные положения молекулярно-кинетической теории.

ЧДЦ: сформулировать и проанализировать основные положения МКТ


(1 балл)

2. Ответьте на вопросы:

(1 балл)


.Прочитайте §56,58. Запишите в таблицу 1 основные положения МКТ, цель МКТ и доказательства основных положений МКТ.

(1 балл)

2. Ответьте на вопросы:

- доказательны ли основные положения МКТ?

- достаточно ли убедительны эти доказательства?

(1балл)


УЭ4. Размеры и масса молекул. Относительная молекулярная масса и количество вещества.

ЧДЦ: Воспроизводить формулы для расчета размеров, массы молекул. Решать стандартные задачи на расчет массы, количества вещества.


2. Решите задачи.

(За решение каждой – 1балл)


ИТ,ИД,ИЭ

1.Какое количество вещества содержится в алюминиевой отливке массой 5,4кг?


ДТ,ДД,ДЭ

1.Какова масса 500 моль углекислого газа?


1.Найдите формулы для расчета диаметра молекул, массы молекул., относительной молекулярной массы, количества вещества. (1балл)

2. Решите задачи.

(За решение каждой – 1балл)


2.Сколько молекул содержится в углекислом газе (СО 2) массой 1г?

2.Найти число атомов в алюминиевом предмете массой 135 г.

Обобщённый алгоритм решения задачи

  1. Переведите все физические величины в международную СИ

  2. Количество вещества определяется по формуле =N/N A (1)

  3. Молярная масса М = m 0 N A

  4. Заменив N и N A в (1), получим = m/М (расчётная формула для задачи 1), где М - молярная масса (масса вещества в количестве 1 моль)

  5. Число молекул определяется по формуле N = N A m/М (расчетная формула для задачи 2)

  6. Молярная масса сложного вещества определяется М = М r (1) + М r (2)

УЭ4. Беспорядочное движение частиц. Силы взаимодействия молекул.

ЧДЦ: Усвоить сущность броуновского движения, знать отличия от диффузии. Объяснять природу сил взаимодействия молекул, выяснить зависимость от расстояния между молекулами.


УЭ5. Выходной контроль

ЧДЦ: Проверить усвоение учебных элементов


УЭ6.Подведение итогов.

ЧДЦ: заполнить лист контроля, оценить свои знания.

Модуль М1. 2 уровень сложности.

Основные положения молекулярно-кинетической теории. Размеры и масса молекул. Количество вещества. Броуновское движение. Силы взаимодействия молекул.


УЭ0.Определение цели и задач модуля.

ДЦМ: усвоить основные положения МКТ, конкретизировать понятие о размерах и массе молекул, повторить, углубить и систематизировать знания о количестве вещества. Осмыслить суть беспорядочного движения частиц.


Интегральные когнитивные стили

Дифференцированные когнитивные стили

Руководство по усвоению учебного материала

Содержание учебного материала (ИТ,ИЭ,ИД)

Содержание учебного материала (ДТ,ДЭ,ДД)

Руководство по усвоению учебного материала

УЭ1. Входной контроль по теме «Основные положения МКТ. Размеры и масса молекул. Количество вещества. Броуновское движение»

ЧДЦ. Составить план изучения модуля и определить основные учебные задачи. Вклад М.В. Ломоносова в развитие МКТ.


1. Просмотрите §56-58. Обратите внимание на выделенные заголовки текста. Отметьте для себя, какие пункты вы знаете хорошо, о чем вы только частично помните, что вам встречается впервые. На основании этого определите ваш собственный путь изучения М1. Для работы воспользуйтесь учебником, если необходимо обращайтесь к учителю за консультацией.

2. Внимательно ознакомьтесь с вопросами, которые вам предстоит рассмотреть при изучении М1.


(ИТ, ИД, ИЭ, ДТ, ДД, ДЭ)

1. Возникновение атомистической теории строения вещества.

2. Основные положения МКТ. Размеры молекул. Масса молекул.

3. Количество вещества. Число Авогадро.

4. Относительная молекулярная масса. Молекулярная масса.

5. Беспорядочное движение частиц.


1. Просмотрите §56-58. Обратите внимание на выделенные заголовки текста. Отметьте для себя, какие пункты вы знаете хорошо, о чем вы только частично помните, что вам встречается впервые. На основании этого определите ваш собственный путь изучения М1. Для работы воспользуйтесь учебником, если необходимо обращайтесь к учителю за консультацией.

2. Внимательно ознакомьтесь с вопросами, которые вам предстоит рассмотреть при изучении М1.


УЭ2. Представление о строении вещества

ЧДЦ: Повторить сведения о строении вещества и истории возникновения атомистической теории строения вещества.


1.Ознакомьтесь с Приложением 1, проследите этапы становления атомистической теории. Запишите основные этапы с указание дат.

(1балл)

(1балл)


(ИТ,ИД,ИЭ,ДД,ДТ,ДЭ)

История атомистической теории (см. Приложение 1)
Биография М.В. Ломоносова (см. Приложение 2)


1.Ознакомьтесь с Приложением 1, проследите этапы становления атомистической теории. Запишите основные этапы с указание дат.

(1балл)

2.Ознакомьтесь с биографией М.В. Ломоносова. Запишите основные положения, внесённые им в развитие теории.

(1балл)


2Т. Ответьте на вопрос.

(2балла)


Почему на Земле пыль долго удерживается над её поверхностью, а на Луне она быстро оседает, несмотря на то, что сила тяжести на Луне меньше, чем на Земле?

УЭ3. Основные положения молекулярно-кинетической теории. Вклад М.В. Ломоносова в развитие МКТ.

ЧДЦ: сформулировать и проанализировать основные положения МКТ. Ознакомиться с атомно-молекулярной теорией М.В.Ломоносова.


1.Прочитайте §56,58. Запишите в таблицу 1 основные положения МКТ, цель МКТ и доказательства основных положений МКТ.

(1 балл)

2. Ознакомьтесь с материалом Приложения 2. Все ли положения МКТ отражены в данном тексте.

(1 балл)


(ИТ,ИД,ИЭ,ДТ,ДД,ДЭ)

1.Прочитайте §56,58. Запишите в таблицу 1 основные положения МКТ, цель МКТ и доказательства основных положений МКТ.

(1 балл)

2. Ознакомьтесь с материалом Приложения 2.Найдите в тексте основные положения МКТ. Все ли положения отражены в данном тексте?

(1 балл)


Приложение 2

1. Моделирование обеспечивает создание упрощенной, по сравнению с оригиналом, модели. В модели меньше второстепенной информации, чем в оригинале. В модели сосредотачивается информация на тех признаках, которые необходимы для расследования.

«Слепок следа» для нас важно, чтобы он отражал наиболее полно и точно особенности подошвы (протектор, рисунок, изношенность, повреждения и т. д.) другие признаки менее интересны, цвет материала и т.д.

Модель проще оригинала, она отвлекается от деталей, частностей и этим помогает решению познавательных задач.

В моделировании упрощение обуславливает широкое ее применение (составление планов местности, схем-преступлений связей, составление графиков).

ПРОСТОЕ - это доступное, понятное, состоящее из незначительного количества элементов, отношений.

СЛОЖНОЕ-наоборот-трудное для познания.

Человечество всегда пыталось привести сложное к простому и понятному. В математике есть термин «упростить выражение», когда громоздкая формула приводится к простой.

Все гениальное просто, а простое-гениально.

2. Для некоторых видов моделирования характерна НАГЛЯДНОСТЬ.

Наглядность моделей с чувственным восприятием и образным отражением предметов и явлений в сознании. Они оживляют память, способствуют уяснению существа изучаемых фактов и явлений.

«План-схемы» при допросе свидетелей, потерпевших, обвиняемых.

Допрос водителей и других участников ДТП с воссозданием дорожной ситуации с применением специальных планшетов, моделей и т.д.

Следственное действие- проверка показаний на месте говорит само за себя и применяется достаточно часто.

3 Модели выполняют иллюстративную функцию. Служат наглядным подтверждением доказываемых положений.

К протоколу осмотра - планы, схемы.

К акту СМЭ - схемы человека с имеющимися повреждениями.

К акту баллистической экспертизы-фотографии совмещений.

К акту дактилоскопической экспертизы-фотографии отпечатков с указанием совпадений стрелками.

Создание и изучение моделей способствуют, прежде всего, проверке имеющейся и получению новой информации.

Для расследования уголовных дел типичен познавательный, поисковый характер исследования.

Это объясняется тем, что фактор времени оказывает свое влияние на следы преступления: иногда благоприятствуют их уничтожению, сокрытию, равно как сокрытию самого преступления, так и лица, совершившего его. Модели и моделирование восстанавливают события преступления и их участников.

Главной и основной чертой криминалистического моделирования является выражение в этом методе закономерностей всеобщей связи предметов и явлений.

Моделирование базируется на законах отражения и всеобщей связи в силу модели и моделирования включаются в процесс познания.

Основанность на законах обуславливает научность метода и позволяет использовать его как метод доказывания.

Таким образом, результаты моделирования могут использоваться в качестве доказательств и ложиться в основу обвинительного заключения или приговора.

Похожие публикации